Posted in D L Williams, Philosophy

DW’s Favorite Quotes (and Why)

A work in progress

I continue to read and be impacted by the thoughts of others.

He who loves to read, and knows how to reflect, has laid by a perpetual feast for his old age. (Uncle Esek, “Scribner’s Monthly”, September 1880)

No idea who Uncle Esek is, but I have been infinitely blessed by the ability to read and reflect. I was extremely proud of my children when they read their first chapter books. I announced that from that day onward they would never be bored!

Study without desire spoils the memory, and it retains nothing that it takes in [sic]. (Leonardo DaVinci)

This was an epiphany for me. I realized that a huge percentage (>90%?) of my students could not learn chemistry because they did not desire the CHEMICAL KNOWLEDGE. They desired a grade, a checked box on their transcript, a degree, or a future job, but NONE of those things will help them with point groups, wave functions, phase diagrams, etc. To learn CHEMISTRY they have to desire CHEMISTRY. A large part of my job as a professor is awakening the desire for CHEMISTRY, thus opening their ability to RETAIN what they STUDY.

“Of all tyrannies, a tyranny sincerely exercised for the good of its victims may be the most oppressive.” (C.S. Lewis, God in the Dock, 1948)

So much could be written about this quote, but it will get political very quickly. I’ll pare it down to one question. Are policies being made because they actually (with evidence and data) produce good outcomes, or are policies being made because they make the policy makers FEEL good?

I believe in Christianity as I believe that the sun has risen. Not only because I see it, but because by it I see everything else.” (C.S. Lewis, Is Theology Poetry? 1945)

Christianity is a World View as is Naturalism, Deism, Confucianism, etc. World Views are lenses through which one sees EVERYTHING. What is your world view? Why do you have it? How did you get it? Do you have reasons for keeping it? And what would it take for you to change it?

I have told you these things so that in Me you may have peace. You will have suffering in this world. Be courageous! I have conquered the world.” (Jesus of Nazareth, John 16:33)

I love this quote even though it promises suffering. The best quotes tell you something true. They are like an accurate compass. They point North ALL THE TIME, and as long as you have North, you can get un-lost.

Advertisements
Posted in Contact Angle, Critical Solution Temperature, D L Williams, DSC, Education, Forensics, FTIR, Hansen Solubility Parameters, LIF, Physical Chemistry, Raman, RER, Science Education, Solubility, Solvent Blending, Spectroscopy, Thermal Analysis, UV-VIS-NIR, XPS

PCHEM and Forensic Chem Lecture Videos

I frequently have seniors who want to revisit the concepts in pchem sit in my 8AM lectures the year after they have had my course. It’s a privilege to have them and an encouragement to see their natural curiosity in action. They seek to firm up their understanding of the quantum world and how we interact with it (i.e. spectroscopy).

In the fall of 2017, I put these students to work videoing the lectures and posting them on the Physical Chemistry at Sam Channel. These videos are essentially raw footage of lecture. The videos could have been greatly improved by adding in the PowerPoint Slides, captioning, cleaning up the audio, and cutting out my “ums” and “uhs”. But these volunteers did not have time to do that, nor did I. I had a CLEANING WORKSHOP to plan and execute!

CHEM 4448 – Physical Chemistry 1
– Quantum Mechanics and Spectroscopy

CHEM4448-Playlist-Snip

CHEM 4449 – Physical Chemistry 2 -Thermodynamics

4449Lecture-Playlist-Snip

CHEM 4380 – Forensic Chemistry

The students appreciated the fall lecture videos so much, there was a great amount of interest in capturing the Forensic Chemistry Lectures. So we created a Forensic Chemistry at Sam Channel, too.

CHEM4380-Playlist-Snip

The lecture playlist is only one piece. Jessy also created other playlists of videos on the Forensic Chemistry at Sam Channel that should interest Forensic Science and Forensic Chemistry students and enthusiasts. She performed these tasks as an SHSU Honors Contract for the course – an activity that supplements the material for the student and enhances the skills that they take away from the course.

Thanks to the Student Team!

Even raw footage must be stitched together, uploaded, described, tagged, and set up on YouTube. This takes TIME and time is a valuable commodity for our chemistry majors.

I thank William Fernandez for videoing CHEM 4448 and CHEM 4449. His videos were so well-received by the students that Jerome Butler decided to sit in and video my Forensic Chemistry course CHEM 4380. Thanks Jerome!

I thank Matthew Peavy for producing the videos for CHEM 4448 and CHEM 4449, and for uploading them. I thank Jessy Stone for producing and uploading the CHEM 4380 videos for Forensic Chemistry.

You students who are willing to go beyond the minimum give us hope for the future.

You people in industry and in graduate programs, hire these students! You won’t be sorry!

-DW

Posted in Education, Philosophy, Physical Chemistry, Spectroscopy

Why Do I Love Pchem?

abstract-concrete

Pchem, how do I love thee?
Let me count the ways

1. Pchem connects abstract concepts to concrete reality.

The concept of the wave nature of light and matter is very abstract. It is not directly measurable. But the mathematics of interacting waves allows us to predict the interactions of light and matter. This is called spectroscopy.

Your eyes are pigment-based spectrometers detecting light at different wavelengths giving you the ability to perceive what we call color.

From these abstract wave equations we get concrete products like laser pointers and digital cameras. And I love it!

2. Pchem simulates natural phenomena well.

Some of the spectroscopic simulations I have seen in pchem have been truly amazing. To appreciate this, one may need a micro-course in statistics.

The R² value can be thought of as “how much scatter in the data is explained by your model”.

A decent calibration curve in an environmental lab or water quality lab will have a 99.95% R² value, meaning that the calibration model captures 99.95% of the scatter in the data.

The R² value for modeling the rotational-vibrational spectroscopic transitions in carbon monoxide is often 99.9996% or better. This means our pchem model for molecular vibration and rotation is capable of capturing over 99.999% of the variation in the data.  That’s crazy-good! In fact, this model is so detailed, we can tell how much the CO bond length stretches as it spins faster and faster. I love that!

3. Pchem transforms your imagination.

OK. So the wave function concept allows us to simulate nature and to produce exciting gadgets. But what IS the wave function, ontologically?

This is perhaps the most exciting thing about pchem. It transforms your imagination. I am drawn to think deeply about the wave nature of matter, the balance of Coulombic attraction and repulsion, the coupling of intrinsic angular momentum.

What IS the angular momentum of a WAVE?

Where IS the mass in a WAVE?

What (or WHO) sustains these never-decaying ground state wave functions?

Amazing questions for an amazing life of the mind, which is another reason I love pchem.

Posted in Education, Physical Chemistry, reading science, Science Education, working problems

How to Teach Yourself

How do you teach yourself a new skill? How do you learn a tough subject? (like pchem?) I’m glad you asked. Here are my tips and tricks specifically focused on pchem survival (but applicable to life in general).

problems-notebook-cropped

1. Don’t be afraid! (and that’s an order!)

Thousands have been down this road and they were in your shoes back then. You may have to shore up some mathematical deficiencies and look up some vocabulary, but these tasks are obvious to you as you go along. None of this affects your value as a person. But do you have the drive to re-learn what you have forgotten and dig into what you don’t know yet? Decide now! This is not a technical question. It is a heart question. Your answer to this question will determine your future as a productive team member after graduation.

2. Do the tutorials.

Every book has example problems in the text. Every coding site has tutorials. Even Excel has example data sets in its help files to show you “how it is done”. Do the tutorials.

3. Read the text with a pencil NOT a highlighter.

Write in your book margins. Rework math proofs in your problems notebook. Unless the material goes in your eyes, rattles around in your brain, filters down your arm, and out through your pencil, then you haven’t comprehended the material. Highlighting is nothing but self-deceptive Arts and Crafts.

4. Keep a problems notebook.

Do all your problems in a composition book. It is bound and sturdy. It will last much longer than a spiral notebook. Thirty years from now, you can be amazed at how bad-a$$ you were in college when you look at the math problems you did!

AND you can use it to shame your college-aged kids when they complain that their college prof won’t just upload the homework concepts directly into their brain-chip.

5. UNITS!

If you would just use UNITS on your numbers you would catch 99% of your errors. I can’t scream this loudly enough! Units, units, UNITS! Use them, or fail. It’s on you.

“But they take up space. They take time. Whaa Whaa Whaaaa” Look at the photo uploaded with this post. There is NO way to catch all the powers of 10 that jump around in that problem without using units.

6. Pro-tip: Be Disciplined

“The scheduled task gets done”, said my father.

If your homework time is not scheduled, then it will not get done. If you are not using the phrase, “I can’t, I have PHCEM homework to do.” Then you are not learning pchem.

If you want to learn piano or guitar and you don’t schedule practice time, then I don’t want to hear you play. It is the same with sports. If you don’t schedule practices, then I’m not buying a ticket to your game.

Put LEARNING on the calendar, not just TESTING.

—Here endeth the lesson.

Posted in Spectroscopy

Excel Roller Coaster – Yes, my hobby is Excel

If you have FUN programming Excel, on a SATURDAY…You MIGHT be a Redneck I mean, you might be a PCHEMIST.

DLWilliamsExcelRollerCoaster1

Years ago, I was at home on a Saturday fiddling with a wave function problem in Excel. The plot on the screen was of a couple of cosines, and my 8-year-old son said, “Hey that looks like a roller coaster”.

“It sure does.” I said. “Do you want to make a roller coaster in Excel?”

“Yes!”, he said.

So over the next four hours we had some quality father son time making a roller coaster in Excel. He learned something about cosine functions, and how to put custom backgrounds on a chart. Some of the finer details he did not care much for were anchoring cells, negative error bars, or the mod() function. But he really appreciated the custom look of a white wooden roller coaster and the looping macro that made the coaster run along the track.

You can download the macro-enabled (.xlsm) workbook file from my curiosities page to see how these functions and settings were used. Here is a time-lapse video of my creating the page from scratch. There are some fun tricks so I hope you enjoy it. the background loop is a bit annoying. Sorry.

The coaster uses an infinite loop. To kill it just click Ctrl+Break, and it will stop.

What Excel awesomeness to you have to share? What questions do you have about these functions and settings in this fun application?

Ask in the comments field, and subscribe for more fun in the future (like my Sudoku solving spreadsheet).

Posted in Spectroscopy

Fall Cleaning

Forget Spring. I just purchased a lot of optics, and before I rip them from their protective packaging, I had better review my handling and cleaning techniques.

cleaningsupplies

Fortunately for me, Edmund Optics – the company that sold said optics – is savvy enough to send an email approximately 2 weeks after my purchase with guidelines and reminders about how to care for my optics. Here is their first paragraph followed by a link to the rest of their article. (This is not a sole endorsement of EO, but it is an acknowledgement that this 2-week email practice rocks.)

From EO:

“After purchasing an optical component, exercising proper care can maintain its quality and extend its usable lifetime. Choosing the proper cleaning products and using the proper methods are as important as cleaning the component itself. Improper cleaning practices can damage polished surfaces or specialized coatings that have been used on optics such as lenses, mirrors, filters, or gratings, degrading the performance in almost any application. Also, be aware of your clothing and your environment while cleaning optics; shirts with zippers and buttons can scratch your optics, likewise dirty or dusty environments are not well suited for optical applications.”

Continue reading

Enjoy!

:DW

Posted in Spectroscopy

PChem at SHSU, What to Expect

Most of our frustration in life stems from incorrect expectations. So let me line out the year of PChem at SHSU so you will not be frustrated by the unknown.

IMG_0441.JPG

Starting at 30,000 ft elevation, we have the two semesters:
Fall is Quantum Mechanics and Spectroscopy
Spring is Thermodynamics

Zooming in on the Fall semester, we have the following structure.
Quantum Mechanics, Spectroscopy, and Group Theory fully developed on one-dimensional systems.
QM applied to vibrational spectra
QM applied to rovibrational spectra
QM applied to atomic spectra
QM applied to electronic molecular spectra
Spectral simulation with Gaussian

This is a significant departure from the structure of my undergraduate pchem course at UT in the late 80’s. And in my opinion, it is a great improvement!

My goal for the class is for the students to be able to apply a quantum view of light interacting with matter whenever necessary.

I know this approach has been successful because alumni have written me saying that they were able to understand spectroscopic applications not covered in my course. This course gave them the skills to apply the theory in new situations, which is the greatest goal of higher education.

Drilling down into Thermodynamics, I break the course into five sections.
Statistical Thermo taking quantum theory to bulk properties.
Thermochemistry the theory of bulk properties and engines.
Phase diagrams, pure substances, mixtures, and equilibrium.
Non-equilibrium systems and transport phenomena.
Energy sources, sinks, conversion, and efficiency.

This is also a departure from the traditional pchem Thermo treatment, which in my experience was a class in partial differential equations taught under the guise of a chemistry class.

Is this treatment effective? Once again, I rely on alumni to support my claim that it is. They are well employed and advancing in GE, Baker Hughes, Nalco, Agilent, and other competitive companies.