Posted in Spectroscopy

Excel Roller Coaster – Yes, my hobby is Excel

If you have FUN programming Excel, on a SATURDAY…You MIGHT be a Redneck I mean, you might be a PCHEMIST.

DLWilliamsExcelRollerCoaster1

Years ago, I was at home on a Saturday fiddling with a wave function problem in Excel. The plot on the screen was of a couple of cosines, and my 8-year-old son said, “Hey that looks like a roller coaster”.

“It sure does.” I said. “Do you want to make a roller coaster in Excel?”

“Yes!”, he said.

So over the next four hours we had some quality father son time making a roller coaster in Excel. He learned something about cosine functions, and how to put custom backgrounds on a chart. Some of the finer details he did not care much for were anchoring cells, negative error bars, or the mod() function. But he really appreciated the custom look of a white wooden roller coaster and the looping macro that made the coaster run along the track.

You can download the macro-enabled (.xlsm) workbook file from my curiosities page to see how these functions and settings were used. Here is a time-lapse video of my creating the page from scratch. There are some fun tricks so I hope you enjoy it. the background loop is a bit annoying. Sorry.

The coaster uses an infinite loop. To kill it just click Ctrl+Break, and it will stop.

What Excel awesomeness to you have to share? What questions do you have about these functions and settings in this fun application?

Ask in the comments field, and subscribe for more fun in the future (like my Sudoku solving spreadsheet).

Advertisements
Posted in Spectroscopy

Fall Cleaning

Forget Spring. I just purchased a lot of optics, and before I rip them from their protective packaging, I had better review my handling and cleaning techniques.

cleaningsupplies

Fortunately for me, Edmund Optics – the company that sold said optics – is savvy enough to send an email approximately 2 weeks after my purchase with guidelines and reminders about how to care for my optics. Here is their first paragraph followed by a link to the rest of their article. (This is not a sole endorsement of EO, but it is an acknowledgement that this 2-week email practice rocks.)

From EO:

“After purchasing an optical component, exercising proper care can maintain its quality and extend its usable lifetime. Choosing the proper cleaning products and using the proper methods are as important as cleaning the component itself. Improper cleaning practices can damage polished surfaces or specialized coatings that have been used on optics such as lenses, mirrors, filters, or gratings, degrading the performance in almost any application. Also, be aware of your clothing and your environment while cleaning optics; shirts with zippers and buttons can scratch your optics, likewise dirty or dusty environments are not well suited for optical applications.”

Continue reading

Enjoy!

:DW

Posted in Spectroscopy

PChem at SHSU, What to Expect

Most of our frustration in life stems from incorrect expectations. So let me line out the year of PChem at SHSU so you will not be frustrated by the unknown.

IMG_0441.JPG

Starting at 30,000 ft elevation, we have the two semesters:
Fall is Quantum Mechanics and Spectroscopy
Spring is Thermodynamics

Zooming in on the Fall semester, we have the following structure.
Quantum Mechanics, Spectroscopy, and Group Theory fully developed on one-dimensional systems.
QM applied to vibrational spectra
QM applied to rovibrational spectra
QM applied to atomic spectra
QM applied to electronic molecular spectra
Spectral simulation with Gaussian

This is a significant departure from the structure of my undergraduate pchem course at UT in the late 80’s. And in my opinion, it is a great improvement!

My goal for the class is for the students to be able to apply a quantum view of light interacting with matter whenever necessary.

I know this approach has been successful because alumni have written me saying that they were able to understand spectroscopic applications not covered in my course. This course gave them the skills to apply the theory in new situations, which is the greatest goal of higher education.

Drilling down into Thermodynamics, I break the course into five sections.
Statistical Thermo taking quantum theory to bulk properties.
Thermochemistry the theory of bulk properties and engines.
Phase diagrams, pure substances, mixtures, and equilibrium.
Non-equilibrium systems and transport phenomena.
Energy sources, sinks, conversion, and efficiency.

This is also a departure from the traditional pchem Thermo treatment, which in my experience was a class in partial differential equations taught under the guise of a chemistry class.

Is this treatment effective? Once again, I rely on alumni to support my claim that it is. They are well employed and advancing in GE, Baker Hughes, Nalco, Agilent, and other competitive companies.

Posted in Spectroscopy

All About Slugs (Not the Slimy Kind)

Excellent advice for searchability.

The Daily Post

When we start writing a new post, WordPress automatically creates a URL for the post using our blog’s address, the date, and post title. Great, now you don’t have to worry about your post’s URL, right? All taken care of.

Not quite. You don’t need to lose sleep over your post URLs, but paying some attention to the post slug — the bit of the URL after the address and date — can have a nice traffic payoff.

“I’m still not sure what a slug is!”

The slug is the bit of your post’s (or page’s) URL that describes what that specific post is about. Here’s the URL of this post, with the slug in bold:

http://dailypost.wordpress.com/2014/08/15/post-slugs/

If I’d used the URL that WordPress auto-generated for me based on the post title, the slug would have been:

http://dailypost.wordpress.com/2014/08/15/all-about-slugs-not-the-slimy-kind/

They both get the job done, but one…

View original post 502 more words

Posted in Education, Physical Chemistry, Science Education, Spectroscopy

What is pchem?

Pchem is short for Physical Chemistry. It is hated by all. It is SO bad (the audience asks, “How bad is it?”), that it has it’s own bumper sticker!
p-chem
Why is pchem so mistreated?
Like a scientific tax accountant, a P-chemist worries about the energetic balance sheet, the gains and losses of energy, the ratio of usable to unusable energy. We pull the thread through all states of matter – liquid, solid, gas, plasma, elastic, plastic, glass, etc.
My favorite subsection of pchem is symmetry and spectroscopy. Spectroscopy is the study of light interacting with matter. And symmetry is used to decipher these interactions. There is no better example of the mathematical beauty of our universe than the unexpected explanatory power of group theory as it applies to absorption and emission of light.
Fireworks, hair dye, crayons, ink, glow sticks, lightning bugs, and all the rest can be understood through pchem – specifically my field of spectroscopy.
There is much more to pchem. If you have made it this far, then you are truly curious. Therefore, I give you the table of contents to a typical pchem textbook. (You will have to “Look Inside” at the Amazon site to view the TOC.)
And, I ask you to share and subscribe to this blog. Comment below with suggestions for posts.
Posted in Education, Spectroscopy, UV-VIS-NIR

What makes a rainbow?

All of us love a rainbow, and a double rainbow is even more exciting. This is pchem* in action!

350px-Double-Rainbow
A double rainbow photographed in Karlsruhe on July 22, 2011. Leonardo Weiss http://commons.wikimedia.org/wiki/File:Double-Rainbow.jpg

You may have noticed that rainbows only appear with the sun at your back. Why?

Rainbows are angle-dependent. The light coming from behind you hits water drops of a particular size and at a particular angle so that they are diffracted (bent) inside the drop. This can occur in a clockwise or counter clockwise manner. The clockwise path through the drop to your eye and the counter-clockwise path occur at slightly different angles. This creates the two rainbows.

The different wavelengths of light from red to blue also travel at slightly different angles (just like through a prism), and this creates the spread of colors in each rainbow.

Have you ever seen a triple or higher-numbered set of rainbows?

Some will brag and say they have. But this is extremely improbable. If their eyes were sensitive enough to see this higher-order diffraction, then they would be blinded by the bright sunlight needed to produce the rainbow in the first place. The probability of light traveling multiple circles within the water drops to create second- (and higher-) order diffraction effects is very slim compared to the single pass rainbows that we are all familiar with.

Post links to your favorite rainbow images in the comment section.

Subscribe to this blog for more Pchem* topics.

*Pchem (Physical Chemistry) is the study of the physical properties of the universe.

Posted in Contact Angle, D L Williams, FTIR, Hansen Solubility Parameters, Physical Chemistry, Raman, Solubility, Solvent Blending, Spectroscopy, UV-VIS-NIR, XPS

Corporate Research Funding in Uncertain Times

Some points that describe the current R&D funding climate:

  • Continued uncertainty in corporate R&D hiring
    US non-financial corporate cash holdings rose to $1.24 trillion at the end of 2011 according to Moody’s. One reason among many is a reluctance to hire until the uncertainty surrounding benefits costs is reduced.
  • Tightening of government funding of university R&D
    The US government still funds a significant amount of chemical research, but competition for those funds is increasing greatly. The growing deficit must eventually have an impact on the availability of funds for chemical research.

As a physical chemist, I am partial to APPLIED chemistry research, and the interactions I have had with corporations and government contractors have been enjoyable and fruitful for both parties.

I have prepared this blog post and my new “Sponsors Page” on my university website to actively address the R&D needs of corporations and government contractors.  Many of these entities are under a hiring freeze, and yet, their chemistry-related problems continue unaddressed.

When I worked for a government contractor, I dealt with these issues:

  • “I could solve this problem in 6 months, if I didn’t have to support production, also.”
  • “I’d love to hire someone to research this and other issues but
    1) we are under a hiring freeze,
    2) we don’t have the budget for a whole person (1.0 FTE),
    3) we can afford the salary but are reluctant to commit to an unknown fringe benefit committment,
    4) we can afford a science temp, but we need a Ph.D. chemist.”
  • “Maybe a university researcher could help, but there’s no telling what an Ivory Tower Pinhead is going to spend our money on.  And, what would we have to show for it?”

To quote a recent President, “I feel your pain.”  But not all residents of the Ivory Tower are Pinheads.  Here are the benefits of funding an APPLIED-SCIENCE-MINDED university professor and his students to address your problem.

  • Academic salaries for Ph.D. chemists ($70k, 2012 median) are 65% of that in Industry ($107k, 2012 median) according to the ACS Employment Survey, so renting a brain is potentially cheaper than buying one.  Often these are 9-month salaries, but this annualizes to $93k, which is $14k less than the industry median 12-month salary.
  • Academic chemists are able to spend 100% of their effort on your problem during the summer months.  If the median salary of $70k is for 9-months, then funding this scientist for three full months in the summer is only $23k.  Universities tack on varying amounts of overhead and fringe benefits costs to this number so the actual costs will be more like $40k ($85 / hr all-inclusive).  This is still a very reasonable amount for 3-months of a PhD chemist’s time.
  • Academic institutions have an amazing array of instrumentation that your company could not justify purchasing.  The overhead costs tacked onto the academic chemist’s labor rate is the price of admission to the instrumentation lab or computational facility.  Our lab charges consumables costs on a per-day or per-sample basis in the range of $20.  This may seem to add up, but so do the costs of solvents, vials, etc.
  • Academic institutions are FULL of eager chemistry majors who LOVE to study research problems that are “real life”.  These students are also inexpensive when compared to hourly chemical technicians.  A typical student will have a fully-burdened (with overhead) rate of $20 per hour all-inclusive.  These students will graduate with a working knowlege of your industry and will be excellent prospects for future hires.

The number-one factor to consider is the principal investigator (PI).  Does he or she understand your problem?  Have they done similar work in the past?  I have turned down funding because I did not think I could deliver value to the sponsor.  Find someone who understands your terms, your culture, your requirements, and the practical aspects of implementing the ideas proposed.

If your interests are in any of these areas, I’d love for you to contact me.

  • Cleanliness verification, contact angle measurements, coupon tests
  • Solvent properties, surface tension and hydrostatic densities, Hansen solubility parameters vs Hildebrand solubility parameters
  • Solvent blending, solvent blend prediction, miscibility
  • Solvent substitution, reduction of hazards, reactivity, ozone depletion potential, or global warming potential
  • Material compatibility, polymer stress cracking, polymer swell, polymer processing solvents
  • Recrystallization and crystal morphology control based upon non-solvent interactions
  • High-explosive detection, solubility, modeling, spectroscopy, recrystallization, precipitation, and PBX production/processing
  • Spectral assignments and predictions (FTIR, Raman, UVVIS, XPS)
  • Computational chemistry, ab initio, density functional theory, quantitative structure property relationships (QSPR/QSAR)
  • Six-Sigma Blackbelt – consulting services

There are ways to continue innovating in the current business climate.  I’d love to help if I can.

-Darren